Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed human mammary epithelial cells by N-(4-hydroxyphenyl)retinamide.
نویسندگان
چکیده
Epithelial cells from non-cancerous mammary tissue in response to exposure to chemical carcinogens or transfection with oncogenes exhibit hyperproliferation and hyperplasia prior to the development of cancer. Aberrant proliferation may, therefore, represent a modifiable early occurring preneoplastic event that is susceptible to chemoprevention of carcinogenesis. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR), has exhibited preventive efficacy in several in vitro and in vivo breast cancer models, and represents a promising chemopreventive compound for clinical trials. Clinically relevant biochemical and cellular mechanisms responsible for the chemopreventive effects of HPR, however, are not fully understood. Experiments were performed on preneoplastic human mammary epithelial 184-B5/HER cells derived from reduction mammoplasty and initiated for tumorigenic transformation by overexpression of HER-2/neu oncogene, to examine whether HPR inhibits aberrant proliferation of these cells and to identify the possible mechanism(s) responsible for the inhibitory effects of HPR. Continuous 7-day treatment with HPR produced a dose-dependent, reversible growth inhibition. Long-term (21 day) treatment of 184-B5/HER cells with HPR inhibited anchorage-dependent colony formation by approximately 80% (P < 0.01) relative to that observed in the solvent control. A 24 h treatment with cytostatic 400 nM HPR produced a 25% increase (P = 0.01) in G0/G1 phase, and a 36% decrease (P = 0.01) in S phase of the cell cycle. HPR treatment also induced a 10-fold increase (P = 0.02) in the sub-G0 (apoptotic) peak that was down-regulated in the presence of the antioxidant N-acetyl-L-cysteine. Treatment with HPR resulted in a 30% reduction of cellular immunoreactivity to tyrosine kinase, whereas immunoreactivity to p185HER remained essentially unaltered. HPR exposure resulted in time-dependent increase in cellular metabolism of the retinoid as evidenced by increased formation of the inert metabolite N-(4-methoxyphenyl)-retinamide (MPR) and progressive increase in apoptosis. Thus, HPR-induced inhibition of aberrant proliferation may be caused, in part, by its ability to inhibit HER-2/neu-mediated proliferative signal transduction, retard cell cycle progression and upregulate cellular apoptosis.
منابع مشابه
Cyclooxygenase-2 is essential for HER2/neu to suppress N- (4-hydroxyphenyl)retinamide apoptotic effects in breast cancer cells.
We reported that HER2/neu reduces the sensitivity of breast cancer cells to N-(4-hydroxyphenyl)retinamide (4-HPR) by suppressing nitric oxide production. We show that HER2/neu uses Akt to induce cyclooxygenase-2 (COX-2) expression and that inhibition of Akt or COX-2 increases 4-HPR-induced apoptosis and nitric oxide production. Apoptosis induced by the 4-HPR and COX-2 inhibitor combination, alt...
متن کاملInduction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1
Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell...
متن کاملHER-2/neu mediates oncogenic transformation via altered CREB expression and function.
UNLABELLED The cyclic (c)AMP responsive element binding protein (CREB) plays a key role in many cellular processes, including differentiation, proliferation, and signal transduction. Furthermore, CREB overexpression was found in tumors of distinct origin and evidence suggests an association with tumorigenicity. To establish a mechanistic link between HER-2/neu-mediated transformation and CREB p...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملInvolvement of mitochondrial and Akt signaling pathways in augmented apoptosis induced by a combination of low doses of celecoxib and N-(4-hydroxyphenyl) retinamide in premalignant human bronchial epithelial cells.
Celecoxib is being evaluated as a chemopreventive agent. However, its mechanism of action is not clear because high doses were used for in vitro studies to obtain antitumor effects. We found that celecoxib inhibited the growth of premalignant and malignant human bronchial epithelial cells with IC(50) values between 8.9 and 32.7 micromol/L, irrespective of cyclooxygenase-2 (COX-2) expression. No...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 20 2 شماره
صفحات -
تاریخ انتشار 1999